ENTITY

An entity can be a real-world object.

Entity type is basically a collection of **entities** that have the similar attributes.

ATTRIBUTES

Entities are represented by means of their properties, called **attributes**. All **attributes** have values.

For example, a student entity may have name, class, and age as **attributes**. There exists a **domain** or range of values that can be assigned to **attributes**.

Types of attributes

Identifying attributes (identifier):

The attribute that is used to uniquely identify an instance of an entity .

eg:Register No

Descriptive attributes(descriptor):

Non unique characteristics of an entity.

eg:-name &age

Simple attribute(atomic):

The attributes that are indivisible.

eg:age,price

Composite attributes:

The attributes that can be divided into smaller sub parts

eg: address(It can be further divided into house

name,place,district,pin,state.)

Stored and derived attributes:

Two or more attributes values are related in such a way that value of one attribute can be determined from the value of othet attribute.

eg:Age can be determined from current date and value of DOB.Thus the attribute age is a derived attribute and DOB is known as stored attribute.

Single valued attributes:

The attribute that can have only one value for given entity.

eg; book_titile.(One book can have only one title)

Multivalued attribute:

The attribute that can have multiple values for given entity. Eg:email-id,phone no(a student can have zero,one or more email id and phone no)

Null values for the attributes:

Sometimes there may be a situation where a particular entity may not have an appropriate value for an attribute.

Eg :Consider an entity type STUDENT with three attributes firstname,middlename,lastname.Since,not every student has a middlename,will have null value for the attribute middlename.

KEY ATTRIBUTES:

The attribute or combination of attributes whose values are distinct for each individual instance of an entity type is known as a key attribute.

An entity that has a key attribute is called strong entity type, and doesn't have any key attribute is called weak entity type.

PRIMARY KEY

- > The attribute used to uniquely identify an entity is primary key.
- A primary key is a field in a table which uniquely identifies each row/record in a database table.
- > Primary keys must contain unique values.
- > A primary key column cannot have NULL values. .
- When multiple fields are used as a primary key, they are called a composite key.

Foreign keys

Foreign keys are the columns of a table that points to the **primary key** of **another table**. They act as a cross-reference between tables.

ENTITY RELATIOSHIP DIAGRAM(E-R Diagram)

- Describes the structure of a database with the help of a diagram, which is known as Entity Relationship diagram.
- > An ER diagram shows the relationship among entity sets.
- An entity set is a group of similar entities and these entities can have attributes.
- > ER diagram shows the complete logical structure of a database..

- **VARIOUS SYMBOLS USED ARE**
- Rectangle
 Ellipses
- Diamonds
- Lines
- Double Ellipses
- Dashed Ellipses

Double Rectangles

> Double Lines

 \triangleright

Takala adiata di sa ƙasar Itala

: They link attributes to Entity Sets

and Entity sets to Relationship Set

- : Total participation of an entity in
 - elationship set

: Represents Entity sets.

: Multivalued Attributes

: Derived Attributes

: Attributes

: Relationship Set

- ER Diagram has 3 main components
 1.Entity
 - 2.Attributes
 - 3.Relationship

► 1. Entity

- > An entity is an object .
- > An entity is represented as **rectangle** in an ER diagram.

For example: In the following ER diagram we have two entities Student and College and these two entities have many to one relationship as many students study in a single college.

▶ Weak Entity

Bank_Account

> 2. Attribute

- An attribute describes the property of an entity. An attribute is represented as **Oval** in an ER diagram. There are four types of attributes:
- 1. Key attribute
 2. Composite attribute
 3. Multivalued attribute
 4. Derived attribute
- > Key attribute:

> 2. Composite attribute:

Multivalued attribute:

- An attribute that can hold multiple values is known as multivalued attribute. It is represented with **double ovals** in an ER Diagram
- > 4. Derived attribute:
- A derived attribute is one whose value is dynamic and derived from another attribute. It is represented by **dashed oval** in an ER Diagram.

Relationship

- A relationship is represented by **diamond shape** in ER diagram, it shows the relationship among entities. There are four types of relationships:
 - 1. One to One
 - 2. One to Many
 - 3. Many to One
 - 4. Many to Many.

One to One Relationship

 When a single instance of an entity is associated with a single instance of another entity then it is called one to one relationship.
 For example, a person has only one passport and a passport is given to one person.

One to many

- When a single instance of an entity is associated with more than one instances of another entity then it is called one to many relationship.
- For example a customer can place many orders but a order cannot be placed by many customers.

Many to One Relationship

- When more than one instances of an entity is associated with a single instance of another entity then it is called many to one relationship.
- For example many students can study in a single college but a student cannot study in many colleges at the same time.

Many to Many Relationship

- When more than one instances of an entity is associated with more than one instances of another entity then it is called many to many relationship.
- For example, a can be assigned to many projects and a project can be assigned to many students.

Total Participation of an Entity set

A Total participation of an entity set represents that each entity in entity set must have at least one relationship in a relationship set.

Enhanced E-R Model[EER]

- It is used to represent the new and complex database applications such as telecommunications, Geographical information system.
- Extended E-R features are
 - Specialization
 - Generalization
 - Aggregation

- In specialization, a group of entities is divided into sub-groups based on their characteristics.
- ► Top-down approach.

- In generalization, a number of entities are brought together into one generalized entity based on their similar characteristics.
- Bottom-up approach.
- ► It is the reverse of specialization

In aggregation, the relation between two entities is treated as a single entity. In aggregation, relationship with its corresponding

- entities is aggregated into a higher level entity.
 For example: Center entity offers the Course entity act as a single entity in the relationship which is in a relationship with another entity visitor. In the real world, if a visitor visits a coaching center
 - then he will never enquiry about the Course only or just about the Center instead he will ask the enquiry about both.

A super key (key) : it is a set of one or more attributes (columns), which can uniquely identify each record within a table.

Super key is a super set of candidate key.

Stud_id	Name	Phone	Age
1	ASHNAD	1234567892	17
2	ASHNAD	4578136521	19
3	SAFA	4856723542	18
4	HASNA	2589631472	17
5	NIHAL	76184329823	18

Super keys :Stud _id,(studid,name),phone etc

Candidate key:

Super key without redundancy.

It is not reducible further.

<u>Minimum</u> (Single or combination of minimum attributes) <u>set of attributes</u> used to uniquely differentiate record of the table.

ID	NAME	MARKS
S1	А	40
S2	В	20
S3	А	20
S4	С	30

HERE ID IS CANDIDATE KEY, BECAUSE ALL OTHER COLUMNS HAVING REDUNDANT DATA

ID	NAME	MARKS
S1	A	40
S2	A	40
\$3	В	50
S2	В	50

ID-NAME : S1A, S2A S3B S2B SO (ID,NAME) CAN BE A CANDIDATE KEY,BECAUSE NO REDUNDANT DATA

NORMALIZATION

It is the process of minimizing redundancy from a relation or set of relations. Redundancy in relation may cause insertion, deletion and updation anomalies. ... Normal forms are used to eliminate or reduce redundancy in **database tables**.

Here are the most commonly used normal forms:

First normal form(1NF)
Second normal form(2NF)
Third normal form(3NF)
Boyce & Codd normal form (BCNF)

First normal form (1NF)

As per the rule of first normal form, an attribute (column) of a table

cannot hold multiple values. It should hold only atomic values.

Emp-id	Emp-name	Emp-addree	Emp-mobile
101	SSS	Delhi	1234567891
102	bbb	Kerala	4578196833 1287564392
103	kkk	karnataka	2223355466 78945628631

This table is not in 1NF as the rule says "each attribute of a table must have atomic (single) values", the Emp_mobile values for employees bbb & kkk violates that rule.

Emp-id	Emp-name	Emp-addree	Emp-mobile
101	SSS	Delhi	1234567891
102	bbb	Kerala	4578196833
102	bbb	Kerala	1287564392
103	kkk	karnataka	2223355466
103	kkk	karnataka	78945628631

Second Normal Form (2NF)

A relation R is said to be in 2NF if

- ► Table is in INF
- Every non-key attribute in a table must be fully functionally depends on Primary Key

IDSTUD	LASTNAME	ID PROF	PROF	GRADE
1	CCC	3	$\vee \vee \vee$	5
2	AAA	2	GGG	4
3	BBB	1	SSS	6

IDSTUD	LASTNAME	ID PROF	PROF	IDSTUD	ID PROF	GRADE
1	CCC	3	VVV	1	3	5
2	AAA	2	GGG	2	2	4
3	BBB	1	SSS	3	1	6

NON-KEY ATTRIBUTE 'GRADE' DEPENDS UPON 2 OR MORE KEYS THEN IT IS CALLED FULLY FUNCTIONAL DEPENDENCY If A->B and B->C are two FDs then A->C is called transitive dependency.

The normalization of 2NF relations to 3NF involves the removal of transitive dependencies. If a transitive dependency exists, we remove the transitively dependent attribute(s) from the relation by placing the attribute(s) in a new relation along with a copy of the determinant.

Third Normal Form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

- ► Table must be in 2NF
- Transitive functional dependency of non-prime attribute should be removed.

emp_id	emp_name	emp_zip	emp_state	emp_city	emp_district	
1001	John	282005	UP	Agra	Dayal Bagh	
1002	Ajeet	222008	TN	Chennai	M-City	
1006	Lora	282007	TN	Chennai	Urrapakkam	
1101	Lilly	292008	UK	Pauri	Bhagwan	
1201	Steve	222999	MP	Gwalior	Ratan	

Here, emp_state, emp_city & emp_district dependent on emp_zip.

- And, emp_zip is dependent on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively dependent on emp_id. This violates the rule of 3NF.
- To make this table complies with 3NF we have to break the table into two tables to remove the transitive dependency:

emp_id	emp_name	emp_zip
1001	John	282005
1002	Ajeet	222008
1006	Lora	282007
1101	Lilly	292008
1201	Steve	222999

emp_zip	emp_state	emp_city	emp_district
282005	UP	Agra	Dayal Bagh
222008	TN	Chennai	M-City
282007	TN	Chennai	Urrapakkam
292008	UK	Pauri	Bhagwan
222999	MP	Gwalior	Ratan

BOYCE-CODD NORMAL FORM(BCNF) /3.5 NF

Advanced Version of 3NF.

►It is in 3NF.

>For every FD X->Y, X should be super key of table.

STU	SUB	TEACHER
PINKI	DBMS	PRIYA
BHANU	DBMS	MADHU
DEEPU	JAVA	MADHU
JABBAR	DBMS	MADHU

- ► Here TEACHER is not a super key, but determines subject.
- Eliminate the redundant data.

STU	SUB	_
PINKI	DBMS	
BHANU	DBMS	
DEEPU	JAVA	
JABBAR	DBMS	

SUB	TEACHER
DBMS	PRIYA
DBMS	MADHU
JAVA	MADHU